
Design and LTSpice Simulation of a High-Efficiency Bidirectional Single-Phase EV Charger for Vehicle-to-Grid (V2G) Applications
Author: Waqas Javaid
Introduction:
In this project, a groundbreaking single-phase bidirectional current-source AC/DC converter tailored for Vehicle-to-Grid (V2G) applications is unveiled. The converter is ingeniously designed; comprising a line frequency commutated unfolding bridge and an interleaved buck-boost stage. Notably, the semiconductor losses within the line frequency commutated unfolding bridge contribute to the converter’s commendable efficiency. The interleaved buck-boost stage further enhances performance with its dual capabilities of buck and boost operating modes, facilitating seamless operation across a broad battery voltage range [2]. The interleaved structure of this stage significantly reduces battery current ripple. Beyond these advantages, the converter ensures sinusoidal input current, bidirectional power flow, and the capability for reactive power compensation. This project delves into the intricate topology and operational principles of this innovative converter, shedding light on its potential impact in the realm of V2G applications.






Circuit analysis has long been a traditional introduction to the art of problem solving from an engineering perspective, even for those whose interests lie outside electrical engineering.







