🔥 Join Free Webinar on Thermal Energy Storage!

Standstill Frequency Response Test for Obtaining Parameters of Six Phase Double Delta Salient-Pole Synchronous Machine on Example of Claw-Pole Alternator

The current publication introduces an approach for obtaining parameters of a six phase double delta salient-pole synchronous machine, based on the standstill frequency response test. The described approach was verified by measurements on a automotive claw-pole alternator, done in a laboratory on a test bench.


This content is for Basic and Premium members only.
Join Now
Already a member? Log in here

Related Articles

Obtaining the Inductance with Dependence on Frequency and Amplitude of the Applied Alternating Current via Measurements and Validation of Considered Non-linearity and Saturation Effects with Lumped Parameter Model

This publication provides the process for obtaining of a self-inductance of electrical machines with a dependence on frequency and amplitude of an applied alternating current and consideration of a non-linearity and saturation effects in the equivalent circuit lumped parameter model that would have the same frequency and time domain characteristic as some desired investigated electrical machine. The values of inductances were calculated from measured impedances for wide ranges of frequencies and currents according to the theory of a complex inductance and iron losses. The measured data were analyzed and summarized in a table and then used for modeling of a automotive alternator. The model was supplied with curve fitted data. The simulation of a common automotive test case was obtained and compared with measurements. Good match between the theory and measurements and reasonability of the suggested approach were confirmed.


This content is for Basic and Premium members only.
Join Now
Already a member? Log in here

Flux Barrier Design Method for Torque Ripple Reduction in Synchronous Reluctance Machines

Abstract—The current publication introduces the flux barrier design method and the concrete design of the synchronous reluctance machine with the reduced torque pulsations. The reviewed method provides the accelerated approach for designing of rotor flux barriers, based on Fast Fourier transforms and simple mathematical expressions. The proposed method has been utilized in the rotor design of synchronous reluctance machine and has shown desired results in reduced torque ripple. The innovative nonsymmetrical geometries for rotor flux barriers created on the basis of proposed flux barrier design method have been implemented and proved as beneficial. Keywords—Flux barriers; torque ripple reduction; FEM; synchronous reluctance machines.


This content is for Basic and Premium members only.
Join Now
Already a member? Log in here

Calibration and Design of High-Precision Sensor Systems for Optomechanical Applications

Author: Waqas Javaid

Abstract:

This MATLAB script presents a comprehensive framework for the calibration and design of high-precision sensor systems tailored for optomechanical applications. The script encompasses the calibration of cavity optomechanical displacement-based sensors, as well as the design considerations for accelerometers, force detection sensors, and torque magnetometry sensors. The calibration procedure involves processing sensor data, particularly from accelerometers and magnetometers, to derive accurate calibration parameters. A key aspect of the calibration process involves performing a spherical fit on the magnetometer data to determine the center, residue, and radius of the fitted sphere [1]. These calibration parameters are essential for ensuring the accuracy and reliability of sensor measurements.

The MATLAB script also includes simulations and visualizations to illustrate the calibration procedure and sensor design. Furthermore, the project incorporates Simulink models to simulate MEMS accelerometer systems, integrating force, translational dynamics, and voltage outputs. The resulting framework provides a comprehensive toolkit for sensor calibration, design, and simulation, contributing to advancements in high-precision sensor technologies. In addition to calibration, the script provides a platform for designing sensor systems suitable for various applications [2] [3]. Designs for accelerometers, force detection sensors, and torque magnetometer sensors are defined, considering parameters such as sensitivity, frequency range, and noise levels. These designs serve as a foundation for developing sensor systems tailored to specific operational requirements. The MATLAB code simulation also generates informative visualizations, including plots of sensor data, calibration results, and sensor designs. These visualizations aid in understanding the behavior and performance characteristics of the sensors, facilitating informed decision-making during sensor calibration and system design processes.

L ading...